BOOST电路的PSpice仿真分析与设计
来源:电子工程世界 作者:—— 时间:2010-05-31 10:24
3.4 电路稳态分析
对1.4ms~1.46ms时段进行扫描分析,与图4对应的输出波形如图6所示,电路的工作过程与图4类似,只是此刻电感、电容均已进入稳定工作状态,每个工作周期电感提供相同大小的负压,电感电流下降的斜率一定,电感吸收的能量等于释放的能量,电容充电能量等于放电能量,电感、电容不再吸收能量而成为能量传递的工具。
3.5 电流断续模式工作过程的分析
当电感较小,或负载电阻较大,或电路工作周期较长时,BOOST 电路进入电流断续工作模式。现将图3中的负载电阻换为150Ω,经仿真分析,发现电路已经工作于电流断续模式。由仿真发现,电路瞬态过程与电流连续型完全相同,故在此不对电路的瞬态过程再做说明。现取电路进入稳态后的60ms~60.06ms进行扫描分析,与图6对应的输出波形见图7所示。对比图6和图7 不难发现,电流断续型电路在经历了和图6类似的图2(a)和图2(b)两个状态后,在60.024ms~60.03ms时间段处于图2(c)状态,由输出波形可见,此时电感电流减小到0,电感电压的平均值亦为0,S点的电压平均值为电源供电电压15V,由于s点电压Vs小于电路输出电压Vo故二极管D截止,负载所需能量由输出电容提供。
4 结束语
PSpice是当今世界最流行的电路分析软件之一,其仿真结果非常接近实际电路分析和设计环境。本文采用PSpice仿真分析方法,对BOOST 电路的工作过程和升压原理进行了详细的分析,并从能量传递的角度进分析了电感、电容等储能元件由暂态到稳态的工作过程,并且给出了直观易懂的计算机仿真结果验证分析的正确性。对深入理解BOOST 电路有极大的促进作用。
16us~30us时段:开关于16us~ 17us之间断开,并保持断开状态直到30us,电路处于图2(b)状态。电路开关状态再次发生突变,电路仍处在暂态中。由于电感的电流连续特性,线圈L 中的磁场将改变线圈L两端的极性,以保持IL不变,因此图4中VL在这一时段出现负电压,此电压是由线圈L的磁能转化成的,它与电源VI串联,以高于VI 的电压向电路的后级供电,使电路产生了升压作用。此时,电感向后级电路释放能量,电感电流不断减小,电感电流通过二极管到达输出端后,一部分给输出提供能量,一部分给电容充电,可以观察到,电容上的电压在上升,电容开始储存能量。
电路在5us~30us时段之间的工作过程是BOOST 电路的第一个工作周期,此后电路重复上述过程继续工作。