利用高性能ADC打造新的磁共振成像发送/接收架构

来源:电子工程世界 作者:—— 时间:2010-08-25 09:45

静态磁场

  MRI成像需要把病人置于强磁场内,形成有序的氢原子核。通常有三种方法产生磁场:固定磁铁、磁阻(电流通过传统的线圈)、超导磁铁。固定磁铁和磁阻产生的磁场强度一般限制在0.4T以下,无法达到高分辨率图像所要求的场强。因此,大多数高分辨率成像系统采用超导磁铁。超导磁铁体积大且结构复杂,需要把线圈浸入液态氦中,使温度保持在绝对零度附近。

  利用上述方法产生的磁场不仅需要保持较高的场强,还要求在空间上保持均匀,在一定时间内保持稳定。典型成像系统中,要求在成像区域内场强变化小于10ppm。为了达到如此高的精度,绝大多数系统会产生一个弱场强的静态磁场,利用特殊的匀场线圈对超导磁场进行微调,以保持磁场的均匀性。

梯度磁场

  为了生成图像,MRI系统必须首先在2D平面激发人体内的氢原子,然后确定那些恢复到静态磁场时处于同一平面的原子核的位置。这两项工作由梯度线圈完成,产生场强随位置线性变化的磁场。由此,氢原子的共振频率还在一定程度上与空间位置有关。改变激发脉冲的频率控制需要激发的人体区域,当激发原子核恢复到静态时,其位置仍然可以由RF激发脉冲的频率和相位信息确定。

  MRI系统必须具备x、y、z梯度线圈在产生三维的梯度磁场,由此创建病人身体内部不同平面的图像切片。每个梯度磁场和激励脉冲必须进行适当的排序或定时控制,以便对每组图像数据进行组合成像。例如,在z轴方向作用一个梯度磁场,可以改变共振频率,以产生该平面的2D切片图像。由此可见,2维平面的成像位置受控于激励信号频率的变化。激发过程结束后,在x轴方向产生适当的梯度变化,当原子核恢复到静态位置时可以按照空间改变原子核的共振频率。该信号的频率信息能够用来定位原子核在x轴方向的位置。同样,在y轴方向作用适当的梯度磁场能够在空间上改变共振信号的相位,用于检测原子核在y轴方向的位置。按照适当的顺序,以适当的频率产生梯度磁场和RF激励信号,MRI系统即可构建人体的3D图像。

  为了达到所要求的图像质量和帧率,MRI成像系统的梯度线圈必须能够快速改变静态磁场的强度,使成像区域的场强变化大约5%。系统需要高压(工作在几千伏特)、大电流(几百安培)驱动产生梯度磁场的线圈。在满足大功率需求的同时还要确保低噪声和高稳定性,线圈中的任何电流扰动都会导致RF拾取信号中的噪声,从而直接影响到图像信号的完整性。

相关文章

资讯排行榜

  • 每日排行
  • 每周排行
  • 每月排行

华强资讯微信号

关注方法:
· 使用微信扫一扫二维码
· 搜索微信号:华强微电子