如何在晶心平台实作ROM patch

来源:华强电子网 作者:—— 时间:2012-07-26 16:29

       笔者曾协助多家公司工程师,在AndesCore?上发展firmware。我们发现,当客户开发Non-OS的程序代码,最常遇到的问题在于开发者不知如何撰写linker script。网络上有GNU ld的使用文件,但是linker script的范例太少,尤其开发者需要撰写进阶的linker script,常常不知如何下手。

 

       本篇文章我们分享如何实作ROM patch。使用晶心CPU建构的embedded system,一般具有CPU、外围IP及RAM、ROM。部份客户使用ROM code开机,程序代码放在ROM内,data section放在SRAM里。ROM code的特性是成本低,跟着IC光罩一起生产,当IC制作完成即不可修改,若有制作上的错误或是程序代码逻辑上的错误,只能用ROM patch的方式修补。也就是将需要修补的程序代码放到小容量的flash里。这就是我们今天要分享的技术。

 

1.  主程序架构

首先介绍主程序的架构。IC的Memory layout如下图。

 

       红色框线的部份,为主程序编译的范围。主程序main会呼叫到func1、func2和func3这3个function。

       在上图中,黄色区域是IC的ROM,这部份的程序是IC制作出来即不可以改变。绿色部份是flash。在图中,flash分成2区,一个是jump_table,存放func1~func3的地址。剩余的空间FUNC_PATCH,预留给patch使用。

       为了要修补ROM内的function,所以规划出jump_table区域,原本都是指向ROM的function。如果ROM里的部份function损坏或是需要改写,就把jump_table改为指向FUNC_PATCH里新建的function。

 

1.1 源代码

主程序的程序代码如下:(main。c)

#include <stdio.h>

#include <stdlib.h>

int func1(int);

int func2(int);

int func3(int);

int num1=1;

int num2=2;

int num3=3;

 

typedef struct strfunptr {

   int (*func_a)(int);

   int (*func_b)(int);

   int (*func_c)(int);

}sfptr;

 

sfptr jump_table __attribute__ ((section ("FUNC_TABLE")))= {func1, func2, func3};

 

int main(void) {

 

    printf("func1(30)=%d\n",jump_table.func_a(30));

    printf("func2(30)=%d\n",jump_table.func_b(30));

    printf("func3(30)=%d\n",jump_table.func_c(30));

 

    return EXIT_SUCCESS;

}

 

int func1(int x){

    return x*num1;

}

int func2(int x){

    return x*num2;

}

int func3(int x){

    return x*num3;

}

 

上面的程序代码中,第16行的程序代码__attribute__ ((section ("FUNC_TABLE"))),作用是将jump_table放在特定的”FUNC_TABLE”section里。

 

1.2 主程序linker script (仅列需要修改的部份)

 

  FUNC_TABLE 0x510000 :

    {

    *(.FUNC_TABLE)

     }

 

Flash的地址由0x510000起,将FUNC_TABLE固定在flash的最开头,语法如上。

 

1.3 主程序执行结果

 

func1(30)=30

func2(30)=60

func3(30)=90

 

2.  经过Patch之后的架构图

假设ROM里的func2损坏,要改用flash里的func2。需要更改指向func2的指标,及func2的内容。如下图:

 

   

用红色框线标起来的地方,表示为patch编译的范围。其中jump table在这里重新编译,指向新的地址。

 

2.1 实作方法

(1) 导出主程序的symbol table。

在主程序的Linker flags 加上-Wl,--mgen-symbol-ld-script=export。txt ,ld 会产生export。txt这个档案, 这个档案包含了一个SECTION block以及许多变数的地址。如下图所示

 

                     

                              图表3 主程序的symbol

 

Linker script在import Main program的symbols时,除了需要修改的func2不要import之外,其他的symbols全部要import进来。(将export。txt删去这一行:      func2 = 0x005001c4;    /* ./main。o */)

 

(2) patch在编译之前,先汇入主程序的symbol table。(将export。txt档案放在一起编译)。Patch的linker script要汇入主程序的symbol,写法如下面红色字体。

 

ENTRY(_start)

/* Do we need any of these for elf?

   __DYNAMIC = 0;    */

INCLUDE "..\export。txt" 

SECTIONS

{

 

(3) patch的程序代码里如下,没有main function,也不要加入startup files。改写func2。func2放在flash的FUNC_PATCH section。并且将jump_table里的func2,改成指向新的func2。

 

 

#include <stdio.h>

#include <stdlib.h>

 

extern int func1(int);

extern int func3(int);

int func2(int) __attribute__ ((section ("FUNC_PATCH")));

extern int num2;

 

typedef struct strfunptr {

   int (*func_a)(int);

   int (*func_b)(int);

   int (*func_c)(int);

}sfptr;

 

sfptr jump_table __attribute__ ((section ("FUNC_TABLE")))= {func1, func2, func3};

 

int func2(int x){

    return x*num2*100;

}

 

 (4) patch的linker script,加入FUNC_PATH在jump_table之后。

FUNC_PATCH 0x510020 :

    {

    *(.FUNC_PATCH)

     }

 

3. 如何除错

       首先,将程序代码存放在IC的ROM及flash里。(本文为了示范,我们的做法是在AndeShape? ADP-XC5的FPGA板上,用RAM模拟ROM及flash,分别将主程序和patch的bin文件restore到板子上。)

 

当gdb debug时,载入patch 的symbol。以下节录gdb指令。

 

core0(gdb) file mainprog.adx

core0(gdb) add-symbol-file patch.adx  0x500000 -s FUNC_TABLE 0x510000 -s FUNC_PATCH 0x510020

core0(gdb) set $pc=0x500000

core0(gdb) b main

Breakpoint 1 at 0x50010c: file ../main。c, line 20.

core0(gdb) c

Breakpoint 1, main () at ../main。c:20

20              printf("func1(30)=%d\n",jump_table.func_a(30));

core0(gdb) s

func1 (x=30) at ../main。c:28

28              return x*num1;

core0(gdb) n

29      }

core0(gdb) s

main () at ../main。c:21

21              printf("func2(30)=%d\n",jump_table.func_b(30));

core0(gdb) s

func2 (x=30) at ../patchprog。c:24

24              return x*num2*100;

core0(gdb)

 

       上面过程中,先加载main的symbol,再加载patch的symbol及debug information。"add-symbol-file patch.adx  0x500000 -s FUNC_TABLE 0x510000 -s FUNC_PATCH 0x510020"是将patch section的symbol及debug information也载入gdb以debug。读者可以在gdb里,打"help add-symbol-file"查阅add-symbol-file的用法。

 

3.1 主程序patch后的执行结果

 

       func1(30)=30

       func2(30)=6000

       func3(30)=90

 

4. 结语

       目前晶心科技使用GNU的toolchain,其功能非常强大。读者可多动手试试不同的linker script写法,使得开发firmware更有弹性及效率。

 

       作者:赖歆雅,女,台湾省新竹县人。1977年出生,2002年毕业于台灣成功大学电机研究所VLSI/CAD组硕士班。


 

相关文章

资讯排行榜

  • 每日排行
  • 每周排行
  • 每月排行

华强资讯微信号

关注方法:
· 使用微信扫一扫二维码
· 搜索微信号:华强微电子