未来LED利用溅射法可实现在玻璃基板制造

来源:华强电子网 作者:------ 时间:2014-07-10 09:47

  东京大学生产技术研究所教授藤冈洋的研究室开发出了利用溅射法在玻璃基板上形成氮化镓(GaN)结晶构成LED的技术。

  该技术使基板及结晶生长的成本大幅降低,有望促进LED实现低价格化。另外还存在低成本实现大面积LED的可能性,因此还有望实现大屏幕高精细LED显示器,以及可取代以面发光为特点的有机EL照明的大面积LED照明。

  藤冈等在约5cm见方的玻璃基板上转印了石墨烯多层膜。然后在石墨烯多层膜上用脉冲溅射法(PSD)形成了AlN、n型GaN、由GaN与InGaN的多层构造构成的量子阱(MQWs),以及p型GaN各层(图1(a))。据称已确认通过光激发及电流注入均可作为LED发光。另外,此次还分别制作出了以红色(R)、绿色(G)、蓝色(B)三原色发光的LED。

  制造效率超过MOCVD

  用溅射法来形成包括量子阱等在内的高品质GaN结晶,这在以前是公认几乎不可能的,但仍有很多研究机构及企业在尝试开发,不过“成功的只有我们,这在全球尚属首次”(藤冈)。

  藤冈早在约10年前就已开始致力于该技术的开发。“虽然最初时GaN结晶品质较低,但品质及生产效率逐步得到了提高。现在,生产效率要比LED制造中常用的MOCVD*要高,而且还可实现被称之为Layer By Layer的、以原子为单位的成膜”(藤冈氏)注1)。

  *MOCVD=有机金属化学气相沉积法。由于需要使用毒性强的有机金属原料及氨气(NH3)等,因此需要更多的成本。

  注1)“牺牲性能来提高制造效率没有任何意义,因此此次的LED是利用与MOCVD相同的数μm/h的成膜速度制作的”(藤冈)。

  此次开发的技术“属于结晶生长条件及步骤等经验的范畴,溅射装置可利用已有的产品”(藤冈)。目前已利用该技术“试制出了LED以及由GaN构成的高电子迁移率晶体管(HEMT)”(藤冈)。

  可低成本获得石墨烯

  另外,之所以要在玻璃上铺上石墨烯,是因为这样做可使氧化铝(AlN)及GaN的结晶品质得到大幅提高(图1(b、c))。

  

图1:石墨烯是成功的关键

  东京大学藤冈研究室开发的、利用溅射法在玻璃上制成的LED元件的构造(a)。在玻璃上首先转印石墨烯成为关键,没有石墨烯的话GaN结晶的品质就不会提高(b 、c )。(图片、照片由东京大学提供)

  藤冈于2008年开发了在石墨片材上使AlN结晶及GaN结晶生长的技术。石墨烯可以是只有一层原子的石墨片材,近三年来,已能够低成本制造数层且多结晶的石墨烯大面积片材了。此次使用的石墨烯据称就是市售产品。“石墨烯是二维的,因此即便是多结晶,c轴的朝向也是统一的,晶界状态也很好”(藤冈)。

  在LED的发光性能方面,目前还没有可与已有产品比较的WPE(Wall Plug Efficiency,发光效率)等数据。不过,在对极低温条件下光激发产生的内部量子效率进行检测时,“结果比已有LED低数成。今后的课题是如何提高内部量子效率”(藤冈)。

  还可在大面积玻璃上制造

  如果发光性能没有大的问题,此次的技术便有可能动摇已有的LED技术,乃至液晶显示器及有机EL技术(图2)。

  

图2:大面积LED的价格接近原来的1/10

  利用此次技术制造大面积LED时单位面积制造成本的推测值与2012年普通LED封装的比较。单位面积的成本接近原来的1/10。假设结晶生长的成本通过使用溅射法降至1/2,晶圆处理的制造成本也因大面积化而降至1/2。2012年的具体成本依据美国能源部的资料。

  首先,通过将基板改为玻璃,省去了LED的蓝宝石基板。玻璃基板的成本只有蓝宝石基板的数十分之一。即便与使用比蓝宝石便宜的Si基板的“GaNon-Si”技术相比,也有望实现更低的成本。而且,通过使用溅射法,结晶生长装置的成本也比MOCVD法降低。另外,如果能够分别制造RGB发光元件,还可省去荧光体的成本。不过,只凭借这些方面的改进,LED的制造成本还降不到1/2。因为封装的成本占到整体的6成。

  对此,藤冈认为“LED封装成本高是因为在小的LED芯片中流过大电流的散热对策上耗费了成本。而溅射法也普遍用于在数m见方的玻璃上制造液晶显示屏,适于大面积的成膜。这样,在制造大面积LED时,封装成本就可得到大幅降低”。这时单位面积的制造成本接近已有LED的1/10。

  如果能够低成本制造大面积LED,在实现不用液晶的自发光LED显示屏时,门槛就会大为降低。而且与有机EL相比,还具有可靠性高的优势。

  此次虽然使用的是玻璃基板,但“只要可转印石墨烯,并具有可承受约500℃处理温度的耐热性,基板可使用任何材质”(藤冈)。另外,如果利用超薄可弯曲的玻璃基板等,还可制造具有柔性的大面积LED。

  而Craven也表示,CBRAM的放射线耐受度为医疗设备领域带来了前所未有的可能性,将来可望会出现例如「智慧型注射器」这样的装置:「我们真的对此感到兴奋。」

 

关注电子行业精彩资讯,关注华强资讯官方微信,精华内容抢鲜读,还有机会获赠全年杂志。

关注方法:添加好友→搜索“华强微电子”→关注

或微信“扫一扫”二维码

资讯排行榜

  • 每日排行
  • 每周排行
  • 每月排行

华强资讯微信号

关注方法:
· 使用微信扫一扫二维码
· 搜索微信号:华强微电子