基于高速超微型C8051F300单片机的CCD驱动电路设计
来源:21IC 作者:—— 时间:2011-06-21 10:31
1 常用的CCD驱动时序产生方法
CCD厂家众多,型号各异,其驱动时序的产生方法也多种多样,一般有以下4种:
(1)数字电路驱动方法
这种方法是利用数字门电路及时序电路直接构建驱动时序电路,其核心是一个时钟发生器和几路时钟分频器,各分频器对同一时钟进行分频以产生所需的各路脉冲。该方法的特点是可以获得稳定的高速驱动脉冲,但逻辑设计和调试比较复杂,所用集成芯片较多,无法在线调整驱动频率。
(2)EPROM驱动方法
这种驱动电路一般在EPROM中事先存放所有的CCD时序信号数据,并由计数电路产生EPROM的地址使之输出相应的驱动时序。该方法结构相对简单、运行可靠,但仍需地址产生硬件电路,所需EPR0M容量较大,同样也无法在
线调整驱动频率。
(3)微处理器驱动方法
这种方法利用单片机或DSP通过程序直接在I/O口上输出所需的各路驱动脉冲,硬件简单、调试方便、可在线调整驱动频率。但由于是依靠程序来产生时序,如果程序设计不合理,会造成时序不均匀;而且往往会造成微处理器资源浪费;通常驱动频率不高,除非采用高速微处理器。
(4)可编程逻辑器件驱动方法
这种设计方法就是利用CPLD、FPGA等可编程逻辑器件来产生时序驱动信号,硬件简单、调试方便、可靠性好,而且可以得到较高的驱动频率。同样也可在线调整驱动频率。电路设计完成以后,如果想更改驱动时序,只需将器件内部逻辑重新编程即可。
以上4类方法中目前常用的是微处理器驱动方法(通常又称为“软件驱动”法)和可编程逻辑器件驱动方法(又称“硬件驱动”法)。由于在CCD应用系统中,一般都要用到微处理器,所以若采用“软件驱动”法,则无需增加硬件,在电路结构上最为简单,系统成本也最低,因此,只要能克服其驱动频率低、资源浪费多、时序不均匀等缺点,无疑是一种理想的驱动方法。本文结合Toshiba公司的TCDl206线阵CCD,介绍如何利用C8051F300来产生其要求的驱动时序。
2 硬件设计
如图1所示,虚线框内的电路构成CCD驱动处理板。安装在CCD相机内部。系统处理器采用美国Silabs公司推出的超微型高速8位单片机C8051F300,CCD采用Toshiba公司的高灵敏度线阵CCD图像传感器芯片TCDl206,双电压供电的总线驱动器LVC4245解决了单片机(3.3V)和CCD(5V)二者之间的电平匹配。CCD驱动脉冲由C8051F300提供,其像素输出电压经高速运放AD8031处理,由U0引脚引到外部,同时向外部提供像素同步信号PS和行同步信号FS(由PO.6、P0.7经LVT245总线驱动器所得)。

U0、PS、FS这3个信号供外部处理器采集CCD像元输出。另外,有时可能要在线调整CCD的某些参数(如驱动频率、积分时间等),为此设置了RS232串口与外部处理器进行通信。
2.1 TCD1206
TCD1206是Toshiba公司生产的高灵敏度二相双沟道线阵CCD图像传感器芯片,2160个有效像素点,像素频率为0_3~2MHz(本系统为1.MHz),其驱动时序波形如图2所示。

图2中:φl、φ2为像素脉冲,两者互为反相,RS为复位脉冲.SH为光积分脉冲,OS为像元输出,DOS为像元补偿输出。当SH为低电平时,在φ1、φ2交变后,OS输出像元电压信号,随后发RS脉冲,以便去掉信号输出缓冲中的残余电荷,为下一点像素电压输出做准备。各脉冲具体时序关系可参见参考文献。
2.2 C8051F300
C8051F系列单片机其CPU内核采用流水线结构,机器周期由标准8051的12个系统时钟周期降为1个系统时钟周期,使其执行速度在相同晶振下是标准8051的12倍,处理能力大大提高,大部分C8051F单片机的峰值处理速度是25M1PS,而C8051F12X、13X系列的峰值处理速度则达到了100MIPS。C8051F系列单片机功能齐全,性能优异,其整体性能超过很多目前的16位单片机,甚至在一些低端应用中可取代低速的16位DSP器件,目前在仪器仪表、工业控制、嵌入式产品等领域日益得到广泛应用。
C8051F300是C8051F系列中的超微型高速混合系统级单片机,是目前世界上最小封装的8位单片机,11个引脚,封装在面积为3ram×3mm的芯片上。内部集成了3个16位定时器、3个可编程捕捉,比较模块、1个UART串口、1个I2C串口、1个8通道500KSPS采样率的8位ADC、8KB的Flash程序存储器、256B的内部RAM、8个I/O口,系统内部振荡时钟为24.5MHz(±2%)、最大峰值处理速度可达25MIPS。
由图2可见,在4路CCD驱动脉冲中,对时序要求严格的是φ1、φ2和RS,为此,利用C8051F300的可编程计数器阵列模块的2个可编程捕捉,比较模块输出口(CEXO、CEXl)自动产生φl、φ2,以CEXO为基准点,再产生RS和其他脉冲。
- •免费直播预告 | 从理论到实操,全面解析ADC/DAC芯片测试前沿方案!2025-06-17
- •摩尔斯微电子携手Gateworks,利用Wi-Fi HaLow革新工业连接2025-06-04
- •重磅!中国或禁止政府采购这类芯片和品牌2024-03-25
- •最新PMIC芯片市场竞争格局、供应商及发展趋势2024-03-19
- •出货量翻50多倍!这类芯片涨价20%!村田/ST/微芯/华邦电等最新现货行情 | 周行情137期2024-03-18
- •对标ST!这家国产厂商的该类芯片加速上车2024-03-15
- •马来西亚芯片的崛起2024-03-14
- •这些芯片,将大幅涨价2024-03-11
- •CITE2024开展倒计时 等你来看大模型、芯片、机器人、智能驾驶……2024-03-04
- •裁员潮!这些品类芯片售罄!ST/微芯/华邦等最新现货行情 | 周行情135期2024-03-04
资讯排行榜
- 每日排行
- 每周排行
- 每月排行
- Wolfspeed宣布200mm碳化硅材料产品组合开启大规模商用,推动行业实现规模化量产
- 大联大诠鼎集团推出两款基于英诺赛科产品的48V四相2kW降压电源方案
- 艾迈斯欧司朗发布全新高分辨率dToF传感器 开启精准识别新纪元
- 兆易创新亮相CIOE光博会,以多元产品线赋能光通信未来
- Melexis“Distance-to-Spot”视觉工作室简化远红外温度传感器的选型流程
- 艾迈斯欧司朗亮相CIOE 2025,重磅发布多款光与传感新品及创新应用
- 安森美将在PCIM Asia 2025展示汽车、工业与AI数据中心前沿电源创新技术
- 搭载罗姆SiC MOSFET的舍弗勒逆变砖开始量产
- Vishay推出具有低直流偏压特性和低介质损耗因子(DF)的一类瓷介径向引线高压直插瓷片电容
- 大联大世平集团推出以芯驰科技产品为核心的车身控制器开发板方案
- 拆解安森美核心光伏方案:从器件到系统,全面推动能效提升
- 赛迈测控完成近亿元A轮融资,国产高端测试测量领域发展再提速!
- 安森美将在PCIM Asia 2025展示汽车、工业与AI数据中心前沿电源创新技术
- Wolfspeed宣布200mm碳化硅材料产品组合开启大规模商用,推动行业实现规模化量产
- 搭载罗姆SiC MOSFET的舍弗勒逆变砖开始量产
- 大联大诠鼎集团推出两款基于英诺赛科产品的48V四相2kW降压电源方案
- 艾迈斯欧司朗发布全新高分辨率dToF传感器 开启精准识别新纪元
- Vishay推出具有低直流偏压特性和低介质损耗因子(DF)的一类瓷介径向引线高压直插瓷片电容
- 大联大世平集团推出以芯驰科技产品为核心的车身控制器开发板方案
- 兆易创新亮相CIOE光博会,以多元产品线赋能光通信未来
- 电子元器件销售行情分析与预判 | 2025年7月
- 最新全球Top18工控厂商上半年业绩大PK
- 以技术创新破局“内卷”,武汉芯源半导体打造公司首颗32位全信号链高性价比MCU
- 倒闭超6000家!上半年国产芯片市场正加速变革
- 微容科技丨把握AI大机遇期 挺进MLCC赛道全球前三
- 元器件终端市场洞察及机会分析|202508
- 极小尺寸——吾爱易达推出高集成度芯片级LTE Cat1模组SCS527E
- 大联大诠鼎集团推出基于Synaptics产品的AI疲劳驾驶检测方案
- 瑞萨电子全新超低功耗RA4C1 MCU具备高级安全性和专用外设集,是表计应用及其他应用的理想选择
- Vishay推出适用于恶劣环境的微型密封工业级多匝SMD金属陶瓷微调电位器






