超宽带无线电技术在医疗设备中的应用

来源:电子工程世界 作者:—— 时间:2010-06-01 09:39

由于按时隙来组织通道,因此并不需要每个设备每时每刻都在接收和发送数据。一个设备只需每隔65.5ms被唤醒来收听信标;如果该设备没有任何任务,将重新返回睡眠状态,类似于手机延长电池寿命的睡眠模式。这样就延长了电池供电系统的工作时间。

  UWB的无线接口很像电缆:如果有多个通信成员而通道又有限,就必须对访问权限进行管理。当打算发送信息到某一通道时,该设备成员需要进行“侦听”以确定该通道是否已被别的设备占用。如果其发现该通道空闲,就发送信息。

  当然,有可能两个设备同时侦听该通道,都发现它是空闲的,并同时向其发送信息,这就是所谓的“冲突”。发生“冲突”时,设备将尝试稍后再访问通道。这期间,每个设备在重试前都等待一个随机时长。优先级较高的设备可能比优先级较低的设备先进行重试。这种“竞争访问”机制是20世纪70年代随以太网发明的,也常用于WLAN。显然,如果要以最低延迟持续地传输一段视频流,这种方法就行不通了。


图3 超级帧被划分成 信标段(BP)和数据传送段(DTP)

  为确保能无中断地传输视频流,UWB采用了分布式驻留协议(DRP)。由于UWB基于TDMA,网络成员可保留一些固定的时隙(媒体访问时隙)以保障和另一设备的通信。保留通道占用时隙的相关信息在信标时段传送。如果某一时隙被标记为“硬保留”,任何第三方都不可占用该时隙。这是保障视频传输要求的确定性数据传输速率所必须的。

实施方案

  图5所示为内窥镜摄像头单元的框图。窥镜的框图与之相似,除了数字视频接口为显示控制器所取代。UWB物理层基于Wionics Research的RTU7012双波段PHY,符合WiMedia PHY 1.1 和PHY 1.2规范。它可以用于频带组1和3。

  在这个例子中,UWB流媒体MAC由苏黎世应用科学大学设计并通过ASIC或FPGA实现,且针对实现低延时的数据传输进行了优化。为了方便将MAC集成到任何系统级芯片(SoC), 将ARM高级主机总线(AHB)用作数据传输总线,将ARM外设总线用作控制总线。这些接口使得MAC非常适合集成到基于ARM的系统级芯片。

  UWB标准的许多参数都由微控制器固件来控制。这样,在需要增添其它高层协议(如无线USB)时,无须修改任何硬件。使用固件实施方案,可以在规范发生变更的情况下降低风险和提高灵活性。


图4电子内窥镜单元的框图

资讯排行榜

  • 每日排行
  • 每周排行
  • 每月排行

华强资讯微信号

关注方法:
· 使用微信扫一扫二维码
· 搜索微信号:华强微电子