限制及影响实际电源设备使用的因素解决方案
来源:元器件交易网 作者:—— 时间:2011-12-28 13:53
电源是每一个电子设备所必须的重要组成部分。按照国际电工委员会标准IEC 61000—3—2的要求,电子设备输入电流中谐波电流成分都有一定的限值,小功率电源可以使用简单的无源功率因数校正,即可获得有效的抑制,而大功率电源则普遍使用有源功率因数校正控制器。作为在较大功率电源中普遍使用的基于L4891B设计的APFC已有诸多介绍,但在实际电源设备的使用过程中,由于工作环境和使用要求的不同往往会出现这样或那样的问题,而限制和影响了它的广泛使用。鉴于此,针对在此过程中出现的诸多问题进行了深入分析和探讨,并提出了一些切实可行的有效解决方案。
1 如何提高效率
现代技术的发展要求电器设备,既要小巧,又要高效,还要求输入电压具有更广泛的通用性。一个完整的Boost APFC包括全波整流和升压型DC—DC转换,这种配置的APFC具有许多优点:连续输入电流和容易提高功率因数。升压型拓扑结构通过限制输入电压也可以获得很高的效率,但当输入电压范围变宽后,要维持同样的高效率就变得有些困难。
为此在实际的应用产品中,采用电路简单、可靠性较高的3种方法:一是减小半导体二极管的反向恢复损耗;二是用IGBT代替MOSFET,以减小开通损耗;再就是减小交流损耗。
首先,选用一种SiC肖特基二极管,它具有高的温度特性(最高允许工作温度达到300℃),高的反向耐压,低的导通电阻和高的开关频率等。以上特点使得开关器件体积缩小,开关频率的提高也使得。Boost APFC的体积进一步减小。同时它还具有正的温度系数,便于在大电流时采用多个二极管并联使用,不会造成二极管之间的电流出现不均衡的现象。再有这种二极管的反向恢复时间及反向电流都非常小,并且有非常好的温度特性,其反向恢复时间不会随着温度升高而变化。用它就会减小开关管导通时的开关损耗,从而提高效率。
其次,用IGBT代替MOsFET,一个主要的原因是:MOSFET开关在低输入电压时,由于导通器件的漏源极间为导通电阻,使得其导通损耗快速增加,即随着电流的增大而与电流的平方成正比。而IGBT则是集射极间的几乎是相同的电压饱和压降,因此,其导通损耗相对增加较慢,只与输入电流成线性关系。这就减小了在宽范围输入电压下的损耗,提高了系统效率。
最后,减小交流损耗,交流损耗的产生主要由电感的纹波电流造成的。绝大部分的损耗来自于磁心本身,并且严重依赖于磁心材料本身,为此采用非晶铁心材料饶制的电感,因为它具有优良的恒电感特性和抗直流偏磁能力,且损耗小。不过成本较贵,但对提高Boost APFC效率效果明显。
经过调整后带整流桥的Boost APFC的输入功率与效率的关系,如下图1所示。
2 如何提高稳定性
平均电流控制技术是在峰值电流控制技术的基础上发展起来的。在这种控制方式中,乘法器与比较器之间增加了一个电流调节器。该电流调节器控制输入电流的平均值,使其与编程信号波形相同,由于电流环具有较高的增益带宽,跟踪误差小,因此瞬态特性较好。是目前应用最广泛的一种控制技术。
这种技术的电压环带宽控制在20 Hz以下,电流环则要求足够快以满足不失真和低谐波的要求。事实是,在实际产品的设计过程中,经由理论分析设计的电路在带阻性负载或者交流变频压缩机测试时,工作一切正常。但当带直流变频压缩机这类感性负载工作时,就出现新的不稳定现象见图2,即遇到双周期分叉现象。
- •【会议议程】12月19-21日2022(十四届)传感器与MEMS产业化技术国际研讨会(暨成果展)佛山南海瞻云酒店召开2022-12-16
- •FORESEE XP1000 PCIe SSD开启Gen3后时代发展之路2021-08-02
- •FORESEE工规级SSD应用宽温技术,加速智能工业场景落地2021-07-21
- •基于J750EX测试系统的SRAM VDSR32M32测试技术研究2017-09-05
- •Vishay检查表: 采用安规电容防止过载的12点注意事项2017-07-28
- •汽车系统的USB供电2017-06-08
- •适用于 FPGA、GPU 和 ASIC 系统的电源管理2017-05-11
- •一文读懂SPI串行外设接口2017-04-27
- •TLV3501滞回比较器电路设计2017-04-14
- •ZigBee无线呼叫系统硬件电路2017-04-05