无源器件的电测量流程设计方案
来源:元器件交易网 作者:—— 时间:2012-02-23 17:04
对宏观器件来说,例如一个电阻,室温下(270oK)的Johnson噪声电压可以表示为:

该公式显示,随着DUT电阻R的降低,DUT产生的Johnson电压噪声也随之降低。与此相反,由电压源激励的高阻抗器件则受到电流测量噪声的限制。在270oK时电阻的Johnson电流噪声为:

这个公式表明随着DUT电阻值的提高噪声值会降低。
对于所有尺寸的微粒来讲,除Johnson噪声之外,还可能存在与选择的测量拓扑结构有关的噪声增益。噪声增益指的是测量系统中噪声的寄生放大,如果选择正确的测量拓扑结构,这种噪声增益将不存在。例如,在一个电压源/测量电流的拓扑结构中,在很多电流测量电路(安培计)中都采用运算放大器,如图1所示。为了减小噪声增益,对于非反向输入端子,安培计电路必须在低增益条件下工作。

图1: (a)电压源/测量电流方法的电路模型。(b)在DUT阻抗值低于测量阻抗时,用改进的模型描述噪声增益。
源-测量仪器
商用的直流源-测量单元(SMU)是一种可用于纳米材料和器件测试的便利工具。SMU可以自动改变测量拓扑结构,例如可以在电压源/测量电流和电流源/测量电压之间迅速转换。这样可以在最大化测量速度和精度的同时很容易地降低测量噪声。
像前面提到的碳纳米管(CNT)那样,一些纳米微粒应用于不同外场时会改变状态。当进行此类材料的研究时,可以对SMU进行配置来提供电压源,并对处于高阻态的纳米粒子测量电流。如果材料处于低阻态,则转换到电流源/电压测量来获得更高的精度。此外,SMU还带有电流验证功能(compliance function),可以自动限制DC电流,防止电流过大损坏待测器件或材料。类似地,当采用电流源时也有电压验证功能。
使用验证功能时,SMU可以输出满足要求的电流/电压源值,除非超过了用户的验证值。例如,当SMU设定在电压源状态,并预设了验证电流值,如果超过了这个验证值,SMU立即自动转换为恒流源,其输出值将稳定在验证电流值。类似地,如果SMU设定在电流源状态,并设定了一个验证电压,当DUT的阻抗和电流源开始使电压高于验证值时,SMU将自动转换到电压源(验证电压)状态。
像CNT开关之类的纳米级器件可以快速改变状态,而仪器的状态转换则并不能在瞬间完成。对于不同的SMU模式,开关时间在100ns到100μs之间。尽管对于跟踪纳米微粒的状态转换来说,这样的开关速度还不够快,但这么短的时间已经足够在每个状态下完成精确测量,同时将DUT的功率损耗限制在可接受水平。
低功率脉动技术
对于纳米级材料的测试来说,选择正确的测量拓扑结构来提高测量的速度和降低噪声依然不够。例如,某些CNT的开关速度是传统CMOS晶体管开关速度的1000倍。这对于纳安级的商用皮可安培计(picoammeter)来说太快了。这类器件的测量要求采用更高速的阻抗测量技术。
低功率脉动方法(pulsing technique)可以部分地解决这个问题,这种技术已经可以用在一些SMU设计上。这种概念是采用很高的测验电流或测验电压,在很短的周期中施加这种大激励。较大的激励可以降低源噪声(通过提高信噪比),并且可以改善电压脉冲和电流脉冲信号的上升或稳定时间。低噪声的激励源需要较少的滤波处理,并允许更短的源激励周期时间(更窄的脉冲宽度)。较大的源激励可以提高响应电流或电压,这样可以有更宽的仪器选择范围,进一步降低噪声的影响。由于降低了噪声,可以缩短测量的采集时间,从而提高测量速度。
避免自发热问题
一个可能的误差源是过高的电流通过DUT时引起的自发热,这样的电流甚至可能引起采样的严重故障,因此在器件测验过程中仪器必须能自动限制电流源。可编程的电流和电压验证电路是大多数带有脉动电流功能、基于SMU测试系统的标准功能,某些低阻结构时应避免自发热。
- •【会议议程】12月19-21日2022(十四届)传感器与MEMS产业化技术国际研讨会(暨成果展)佛山南海瞻云酒店召开2022-12-16
- •FORESEE XP1000 PCIe SSD开启Gen3后时代发展之路2021-08-02
- •FORESEE工规级SSD应用宽温技术,加速智能工业场景落地2021-07-21
- •基于J750EX测试系统的SRAM VDSR32M32测试技术研究2017-09-05
- •Vishay检查表: 采用安规电容防止过载的12点注意事项2017-07-28
- •汽车系统的USB供电2017-06-08
- •适用于 FPGA、GPU 和 ASIC 系统的电源管理2017-05-11
- •一文读懂SPI串行外设接口2017-04-27
- •TLV3501滞回比较器电路设计2017-04-14
- •ZigBee无线呼叫系统硬件电路2017-04-05