dToF开启深度信息的新未来
作用距离的劣势限制结构光的应用,ToF技术则弥补了距离上的缺陷,此外,ToF的模组复杂度低,堆叠简单,可以做到非常小巧且坚固耐用,在屏占比不断提高的外观趋势下,更得到手机厂商的青睐。
目前存在两种ToF技术路线:iToF(间接飞行时间,indirect-ToF)和dToF(直接飞行时间,direct-ToF)。iToF间接测量飞行时间,具备低成本、较高分辨率优势,适用于短距离测距。iToF原理为把发射的光调制成一定频率的周期型信号,测量该发射信号与到达被测量物反射回接收端时的相位差,间接计算出飞行时间。由于iToF sensor 的pixel相对较小,可实现相对高图像分辨率。但iToF的问题在于测距精度的限制了最大测距距离,从原理上看,调制频率越高则测距精度越好,高调制频率意味着对应的测距距离不能太大,并且环境光会对电路产生干扰。因此目前iToF主要应用在手机面部识别、手势识别等测距距离较短的场景中。
iToF传感器电路相对简单,难点主要在深度算法,安卓阵营自2018年引入iToF并推动其主流化。目前如三星、华为、OPPO、vivo等品牌均有在中高端机型中配臵,除此之外,iToF在物体识别,3D重建以及行为分析等应用场景中能够重现场景中更多的细节信息,因此还被广泛应用于机器人、新零售等领域。
dToF直接测量飞行时间,具备低功耗、抗干扰等优势,适用于对测距精度要求高的较远距离测距场景。dToF原理为向被测物体发射光脉冲,通过对反射和发射光脉冲时间间隔的测量,直接计算待测物体的深度。测距原理使得dToF测量精度不会因距离增大而降低,功耗更低同时对环境光的抗干扰能力更强。
dToF深度算法相对简单,难点在于用以实现较高精度的SPAD。dToF要检测光脉冲信号(纳秒甚至皮秒级),因而对光的敏感度要求会很高,因此接收端通常选择SPAD(单光子雪崩二极管)或者APD(雪崩光电二极管)这类传感器来实现,集成度弱于普通的CMOS图像传感器,像素尺寸一般大于10μm,从而分辨率通常较差,成本更高。SPAD是dToF技术的核心,技术难度大且制作工艺复杂,目前世界上极少厂家具备量产能力,集成难度很高难以小型化应用在手机等小型消费电子上,因而除传统热门应用领域车载LiDAR之外,消费电子领域目前仅有苹果一家实现商用(iPadPro首次搭载)。
未来ToF会向更高集成度、更小的传感器尺寸、更高分辨率发展。
目前传统的CIS单像素尺寸最小可达到0.7μm,而目前0.6μm也已经在研发中。但ToF传感器更要求单像素获取信号的能力,因而需要更大的单像素尺寸;dToF传感器电路设计比较复杂,需占据较大的片上尺寸;iTOF像素尺寸则需暂时让步于更高的集光效率。种种原因使得ToF图像传感器的小型化存在一定困难。
半导体工艺改进将有望实现ToF传感器小型化。ToF传感器厂商通过半导体工艺方案的改进,如背照式(BSI)、堆栈式(Stacked)CMOS等技术,将原本位于光电二极管上方的布线层移至下方,以及将光电转换器、电子倍增器(electron multipier)这些部分垂直堆叠,增大像素开口率,同时减小像素尺寸。目前根据松下最新的研究成果,dToF传感器也可以用CMOS工艺实现,集成度已经在数量级上逼近iToF方案。
目前ToF技术低分辨率的固有缺陷仍然存在,未来有望随技术更迭而实现突破。目前ToF测量精度量级仍然相较结构光方案落后,但近两年其传感器分辨率已经在提升。iToF方面,英飞凌面向消费市场的一般REAL3?传感器(iToF)也达到了3.8万像素,2019年推出的IRS2771C则达到15万像素;dToF方面,例如iPad Pro 2020的LiDAR分辨率达到了3万像素;另外TDC电路设计进步也逐步提升CMOS电路中的TDC时间分辨率精度,有望带来dToF的分辨率的提升。
- •艾迈斯欧司朗的新一代直接飞行时间(dToF)传感器凭借低功耗、高精度、超快响应速度和极小尺寸,进一步拓宽应用领域2024-09-05
- •紧跟苹果 安卓机阵营试水dToF 物联网/VR/AR应用或进一步拉动需求2021-08-16
- •炬佑智能:突破旗舰机“围城” ToF从“1到N”的“破圈”之路2021-07-27
- •dToF可量产性存疑?ToF突围旗舰“围城”刻不容缓2021-05-10
- •dToF取代iToF? 场景适配才是关键2020-07-24
- •dToF姗姗来迟, 移动端应用还需解决两大问题2020-07-23
- •未来感爆棚的双屏笔记本只是徒增功耗?华硕灵耀 X2 Pro体验2019-11-20
- •摩尔定律谢幕,芯片的未来在哪?2018-08-23
- •LiDAR技术的过去、现在和未来2017-10-09
- •MEMS的未来市场究竟在哪里?2017-09-29