人工智能历经60年仍未普及 运算效能成重要挑战

来源:华强电子网 作者:包永刚 时间:2017-10-26 09:42

人工智能 运算 IP 人工智能 运算 IP

  金勇斌认为,面对人工智能IP授权商面临三大挑战,首先从计算效能看,需要增加更多计算能力到系统级芯片(SoC)上,并考虑如何在复杂运算环境下降低成本与功耗,使得在边缘和终端的智能设备拥有高效的人工智能任务处理能力,同时具备灵活性和低功耗的特点。其次从安全性角度看,数以亿万计的设备联网需要从IP与标准的角度就考虑确保数据从传感器到服务器的安全。最后从通用性角度看,人工智能的节点计算能力提高之后,无处不在的智能设备使得人工智能场景变得碎片化,智能节点收集的数据结构化和标准化之后,才能供机器学习,进一步处理分析使用。

  Yair Siegel也强调高效能和灵活性方面的挑战。他表示,今天深度学习算法需要结合大量计算和大量数据使用,为了实现大众市场使用,这项技术必需具有高能效,以便用于电池供电设备中。此外,深度学习技术仍然在快速演进和改进,任何IP解决方法必须足够灵活,以便在产品生命周期内进行技术的更新,并且需要实现灵活的编程和易于使用的工具,缩短从研发到生产的过程。而且,它必须具有应对业界不断发展的新标准、新特性和新功能的能力。

  面对效能与运算效率等挑战 IP授权商各有应对之道

  至此,我们不难发现高效能、安全性、灵活性、通用性等都是IP厂商推应对深度学习处理器或者说人工智能商机需要解决的挑战。作为全球重要的IP授商,它们如何应对?陈会馨介绍:“Cadence针对深度学习芯片已经有了四年的研发和储备,今年五月份推出了一款独立完整的神经网络DSP —Cadence Tensilica Vision C5,面向对神经网络计算能力有极高要求的智能视觉设备。针对自动驾驶、监控安防、无人机、机器人和移动/可穿戴设备应用,Vision C5 DSP 1TMAC/s的计算能力完全能够胜任目前终端设备的CNN的计算任务,这款产品的推出对神经网络处理器市场格局来说将产生很大的变化,后续我们也将根据市场的反馈来提供满足深度学习芯片带宽需求的产品。”

  同样推出DSP IP的还有CEVA,Yair Siegel表示:“第一波人工智能算法研究主要使用GPU是因为它们是现成的而且已经广泛用于离线进行的训练部分。然而进入开发和生产消费类产品需要更高能效和更高性能的解决方案。多年来CEVA一直开发用于计算机视觉、语音和深度学习的DSP IP ,CEVA-XM 系列视觉DSP内核连同CEVA深度神经网络(CDNN)工具套件,不仅能够实现低功耗和高效的性价比,满足大众市场设备的要求,还能让产品快速的从研发走向生产。CDNN套件可以应对嵌入式挑战,比如降低数据带宽和处理存储器传送,并以软件更新来灵活的应对技术创新,实现各种产品的可扩展性。”

  Arm则是在今年专为人工智能推出全新的DynamIQ技术。金勇斌介绍,DynamIQ技术将为今后所有新的Cortex-A系列处理器带来全新的特性和功能,包括:1、针对机器学习(ML)和人工智能的全新处理器指令集,第一代采用DynamIQ技术的Cortex-A系列处理器在优化应用后,可实现比基于Cortex-A73的设备高50倍的人工智能性能,并最多可提升10倍CPU与SoC上指定硬件加速器之间的反应速度。2、增强的多核灵活性,SoC设计者可以在单个群集中最多部署8个核,每一个核都可以有各自不同的性能特性。这些先进的能力会为机器学习和人工智能应用带来更快的响应速度。全新设计的内存子系统也将实现更快的数据读取和全新的节能特性。3、在严苛的热限制下实现更高的性能,通过对每一个处理器进行独立的频率控制,高效地在不同任务间切换最合适的处理器。4、更安全的自动控制系统,DynamIQ技术为ADAS解决方案带来更快的响应速度,并能增强安全性,确保合作伙伴能够设计ASIL-D合规系统,即使在故障情况下仍然能够安全运行。(责编:振鹏)



本文为华强电子网原创,版权所有,转载需注明出处

关注电子行业精彩资讯,关注华强资讯官方微信,精华内容抢鲜读,还有机会获赠全年杂志

关注方法:添加好友→搜索“华强微电子”→关注

或微信“扫一扫”二维码

资讯排行榜

  • 每日排行
  • 每周排行
  • 每月排行

华强资讯微信号

关注方法:
· 使用微信扫一扫二维码
· 搜索微信号:华强微电子