实现最佳音频性能的D类放大器设计挑战
来源:电子工程专辑 作者:Jun Honda 时间:2013-07-31 10:32
误差放大器和噪声隔离
音频放大器的主要品质因数为噪声和总谐波失真(THD)。在D类放大器中,这些是由缺陷造成的,包括有限的开关时间、过上/下冲和电源波动。要将这些影响降至最低水平,就需要仔细设计适当的误差放大器,它能够通过比较输入和输出音频信号来修正输出级内的缺陷。然而,A类或AB类设计所用的典型误差放大器不适于D类音频放大器的嘈杂环境。购买合适的运算放大器和确保足够高的抗噪性可能会很困难而且代价高昂。
就噪声隔离而言,D类拓扑要求前、后端要尽可能地靠近彼此。在分立式解决方案中,设计者必须决定如何将输入端的噪声敏感型模拟电路与输出级产生的潜在破坏性开关噪声隔离开来。集成式D类放大器模块让设计者能够绕开这些挑战。然而,利用适当的器件在2个电路之间实现充分的电隔离至关重要。
PWM比较器和电平移位
误差放大器处理完输入音频信号并产生形状适当的输出之后,比较器会将该模拟信号转换成脉宽调制(PWM)信号。
栅极驱动和MOSFET开关
栅极驱动级接收来自于比较器的PWM信号。这个阶段,在高端和低端MOSFET的导通相之间插入死区时间,用以防止过大的电流流过电桥。死区时间消除了输出MOSFET开关延迟时间的影响,开关延迟会产生破坏性直通电流通行,因此能够保证安全操作。然而,插入死区时间还会导致非线性,从而产生不必要的失真。
精确的栅极控制是实现高音频性能的关键。栅极驱动器必须具有脉宽失真低的特性,并且高、低端栅极驱动器级之间要匹配。这2个特性对于将死区时间最小化以便实现线性放大器性能而言至关重要。事实上,死区时间插入通常被视为D类放大器交换级设计中最关键的部分。
保护电路
由于MOSFET的功耗与负载电流的平方成正比,所以保护电路通常要监测负载电流,以便防止在过载条件下发生MOSFET故障。外部分流电阻器通常用于负载电流检测,但是电阻选择和噪声滤波等方面也很关键。这会增加整个解决方案的成本和物理尺寸,并且会拖延项目完成时间。
还需要保护电路来解决由于功率级的关键电流环路通道内的杂散电感而产生的其它开关噪声的影响。
D类音频放大器IC
为了帮助音频工程师迅速完成D类设计和避开原型开发过程中的陷阱,IR利用其在功率集成方面的专业知识制定了D类音频IC的发展路线图,向着在单个封装内实现完整D类放大器的方向迈进。
该系列的首款器件为IRS2092音频驱动器,具有受保护的PWM开关功能。它设计用于连接从IR 50W~500W目标应用中选择的外部数字音频MOSFET。这些器件让设计者能够采用芯片集成法实现比类似的AB类设计小得多的D类音频解决方案。利用IRS2092驱动2个IRF6645 DirectFET音频MOSFET让设计者能够创造板空间小60%、典型物料成本低20%的100W放大器。
IRS2092整合了误差放大器、PWM比较器、具有死区时间插入功能的MOSFET变换级和过载保护功能,这些都是D类放大器的主要功能元件。图2中的模块简图介绍了这些功能。
图2:IRS2092 D类放大器IC的模块简图。
内置式误差放大器基于优化的、带宽为9MHz的高抗噪性运算放大器,让设计者能够实现远低于0.01%的音频失真(THD)。然后,PWM比较器将模拟信号转换成传播延迟短的PWM,这让设计者能够自由地优化反馈环路。通常,一部分开关信号被反馈给误差放大器的输入端,并利用低通滤波器进行预处理。然而,可以通过拉近来自于输出端的反馈之间的距离来降低失真和负载依赖度。IRS2092让设计者能够从任意被认为是最佳的点获得反馈和增加稳定性补偿,从而实现发烧友级谐波失真和噪声(THD + N)性能。
高压电平移位器将接地参考数字信号转换成以高端和低端MOSFET的各个源为参考的栅极驱动信号,从而无论各端存在着怎样的电压差异都能够准确地转发PWM信号,正如理想的差分放大器那样。获得专利的结隔离法能够防止输出电路产生的噪声干扰输入信号。
在栅极驱动级的各个导通状态之间插入死区时间,以便防止高、低端MOSFET内同时出现导通状态。事实上,IRS2092让设计者能够根据所选MOSFET选择死区时间的长短。保证期限让设计者免去了评估最差情况的环节。
跟分立式解决方案不同,IRS2092中内置了过载保护,可以监测输出电流,并且如果超过了预定的阈值,还可以关闭PWM。
其它与功率变换级设计关系紧密的重要放大器特性包括消除脉宽调制器产生的EMI的措施,以及用于在启动和关闭过程中降低开关噪声的电路。通过在内部实现这些特性,IRS2092进一步降低了设计开销和元件数量。这种方法解决了与D类放大器有关的功率电子设计挑战,为工程师应用专业音频技巧进一步提升性能打下了基础。
实际的集成式放大器
为了给设计者提供进一步的帮助,IR证明这种方法也适用于120W双通道半桥参考设计IRAUDAMP5。在利用IRF6645 DirectFET MOSFET驱动4Ω扬声器负载内的2x60W时,放大器在输出端实现了极低的THD+N(0.005%)。并且,在120W下实现了96%的通道效率。参考设计可以为选择反馈(来自于功率输出级)通道内所需的外部集成器元件和RC滤波器元件提供指导。并且,还提供了全部所需家用电源、优化的板布局、PCB制造详情和物料清单。设计无需散热器即可在1/8连续额定功率下正常运行,并且输出功率和通道数量均可扩展。
音频放大器设计的另一个重要方面是保证启动和关闭规程的正确性,防止这些间隔期间出现的瞬态通过输出扬声器产生听得到的开关噪声。传统地,通过插入只有在启动瞬态通过之后将扬声器与音频放大器连接到一起,并在关闭放大器之前断开扬声器连接的串联继电器来将这些瞬态摒除在扬声器之外。由于IRS2092集成了开关噪声消除功能,所以IRAUDAMP5无需任何串联继电器即可断开扬声器,防止产生听得见的瞬态噪声。
- •2018年功率晶体管销售额再创新记录2019-05-16
- •915MHz高效750W射频功率晶体管可实现更紧凑的功率放大器设计2019-04-09
- •Diodes 100V MOSFET H桥采用5mm x 4.5mm封装 有效节省占位面积2016-02-16
- •2015年全球功率半导体市场规模减少7.0%2016-02-16
- •大联大友尚集团推出ST新款高性能功率MOSFET2016-01-21
- •Diodes DFN2020封装P通道MOSFET 降低负载开关损耗2015-12-16
- •Diodes 30V MOSFET使大容量电容器能够 在现场可编程门阵列电源轨上快速及安全放电2015-10-26
- •Diodes全新100V MOSFET优化以太网供电应用2015-10-20
- •Vishay 600V E系列MOSFET利用Kelvin连接来实现更好的性能2015-10-12
- •全新英飞凌功率MOSFET系列使电动工具更紧凑耐用2015-09-02